skip to main content
Menu
Original Article

Design a low-power low-pass nano dimension based filter with high linearity for next-generation WSN

Authors

Abstract

Wireless Sensor Networks (WSN) has received a lot of attention from around the world in the past year due to its broad application in the military, industrial, environmental sense, and other areas. WSNs are a crucial component of the Internet of Things (IoT) ecosystem. As the IoT continues to grow, WSNs will play a vital role in collecting real-time data from sensors and transmitting it for analysis and decision-making. WSNs will enable smart cities, industrial automation, environmental monitoring, healthcare systems, and more.2.4 GHz, 868 MHz, and 433 MHz are some examples of the low radio frequencies that WSN frequently use to operate. Researching and developing RF transceiver chips for the WSN system is very important. Low Pass Filters (LPF) a crucial component of the wireless sensor network chip will have a direct impact on the system as a whole. In WSNs, LPF can help to increase data transmission reliability and efficiency, especially when numerous nodes are transmitting data at once. However, the passive forms of LPFs in contemporary devices suffer greatly from a number of problems, including poor quality components, a limited ability to tune, undesirable harmonic interference, and a huge die size. Instead, some of these constraints can be overcome by active low pass filter types. Therefore, this research presents current-mode LC-ladder filter with improved linearity and dynamic range. We have taken 130 nm RF CMOS technology node at 1.2 V process to simulate LC-ladder filter using ADS Tool from Keysight. For improving the linearity of the LPF, OTA is also proposed with high output voltage swing and classical filter topology’s transconductor are rewired. By combining each method filter demonstrates better results in terms of linearity that is P1dB -30dBm and IIP3 20dBwith dynamic range greater than 56dBm.

Graphical Abstract

Keywords

References

[1]         Murad S., Mohyar S., Harun A., Yasin M., Ishak I., Sapawi R., (2016), Low noise figure 2.4 GHz down conversion CMOS mixer for wireless sensor network application. IEEE St. Conf. on Res. Dev. (SCOReD). 1–4. https://doi.org/10.1109/SCORED.2016.7810032

[2]         Kim S. H., Jang T. H., Kang D. M., Jung K. P., and Park C. S., (2023), Wideband 120-GHz CMOS transmitter with suppressed IMRR and loft for wireless short-range high-speed 6G IoT applications. IEEE Int. Thi. J. 10: 11739-11748. https://doi.org/10.1109/JIOT.2023.3243129

[3]         Chen H. P., Chu P. L., (2009), Versatile universal electronically tunable current-mode filter using CCIIs. IEICE Elec. Exp. 6: 122-128. https://doi.org/10.1155%2F2014%2F515348

[4]         Wilson B., (1990), Recent developments in current conveyor and current-mode circuits. IEE Proc. Cir. Dev. Sys. 137: 63-77. https://doi.org/10.1049/ip-g-2.1990.0014

[5]          Roberts G. W., Sedra A. S., (1989), All current-mode frequency selective circuits. Electro. Lett.  25: 759-761. https://doi.org/10.1049/el:19890513

[6]          Chang C. M., (1991), Current mode all pass/notch and bandpass filter using single CCII. Elect. Let.  27: 1812-1813. https://doi.org/10.1049/el:19911126

[7]         Crols J., Steyaert M., (1994), Switched-opamp: An approach to realize full CMOS switched capacitor circuits at very low power supply voltages. IEEE J. Solid-State Circuits. 29: 936-942. https://doi.org/10.1109/4.297698

[8]          Laxminidhi T., Prasadu V., Pavan S., (2009), Widely programmable high frequency active RC filters in CMOS technology. IEEE Trans. Circuits Syst. 56: 327-336. https://doi.org/10.1109/TCSI.2008.2001759

[9]         Rezaei F., Azhari S. J., (2011), Ultra low voltage, high performance operational transconductance amplifier and its application in a tunable Gm-C filter. Micr. J., 42: 827–836. https://doi.org/10.1016/j.mejo.2011.04.012

[10]     Akbarian F., Lotfi S. M., Maymandi N., (2013), Low-voltage low-power Gm-C filters: A modified configuration for improving performance. Spri., Ana. Int. Cir. Sig. Proc. 74: 297–302. https://doi.org/10.1007/s10470-012-9973-x

[11]     Deeb A., Abugharbieh K., (2019), A CMOS gm-C low-pass filter for direct conversion receivers with tuning capability. Southeast Con, Hunt. AL. USA. 1–4. https://doi.org/10.1109/SoutheastCon42311.2019.9020366

[12]     Rezaei F., Azhari S. J., (2015), A new controllable adaptive biasing linearization technique for a CMOS OTA and its application to tunable Gm-C filter design. Microelec. J. 46: 810–818. https://doi.org/10.1016/j.mejo.2015.06.012

[13]     Sun C. Y., Lee S. Y., (2018), A fifth order butterworth OTAC LPF with multiple output differential input OTA for ECG applications. IEEE Tran. Cir. Sys. II: Exp. Bri. 65: 421–425. http://dx.doi.org/10.1109/TCSII.2017.2695366

[14]      Yue P., Wong S. S., (2000), Physical modeling of spiral inductors on silicon. IEEE Trans. Elec. Dev. 47: 560-568. https://doi.org/10.1109/16.824729

[15]     Thanachayanont A., Payne A., (2000), CMOS floating active inductor and its application to bandpass filter and oscillator designs. IEE Proc. Circ. Dev. Syst. 147: 42–48. https://doi.org/10.1049/ip-cds:20000053

[16]     Font J., Isern E., Roca M., Picos R., Moreno G., (2012), A new self Q-tuning scheme for biquad OTA-C filters, Dev. Cir. and Sys. (ICCDCS). 8th Int. Cari. Conf. 1-5 https://doi.org/10.1109/ICCDCS.2012.6188926

[17]     Lo T. Y., Hung C. C., Ismail M., (2009), A wide tuning range Gm-C filter for multimode CMOS direct conversion wireless receivers. IEEE J. Sol. Sta. Circ. 44: 2515-2524. https://doi.org/10.1109/JSSC.2009.2023154

[18]     Crombez P., Craninckx J., Wambacq P., Steyaert M., (2008), A 100-KHz to 20-MHz reconfigurable power linearity optimized Gm-C biquad in 0.13-µm CMOS. IEEE Trans. Cir. Syst. II. 55: 224-228. http://dx.doi.org/10.1109/TCSII.2008.918927

[19]     Acosta L., (2009), Highly linear tunable CMOS Gm-C lowpass filter. IEEE Trans. Cir. Syst. I. Regul. Pap. 56: 2145-2158. https://doi.org/10.1109/TCSI.2008.2012218

[20]     Saad S., Chaythong D., (2008), A high frequency current mode ladder filter using multiple output lossless integrator. Proc. Int. Sym. Int. Sig. Proc. Comm. Sys. 1-4. https://doi.org/10.1109/ISPACS.2009.4806743

[21]     Mittal N., Khan I. U., Charan P., (2023), Design and performance analysis of low power fully integrated tunable bandpass filter. Mater. Tod: Proc. https://doi.org/10.1016/j.matpr.2023.03.369

[22]     Mittal N., Khan I. U., Charan P., (2022), Design of power-efficient operational transconductance amplifier in the application of low pass filter using 180 nm CMOS technology. Inno. Elec. Electro. Eng: Proc. ICEEE 2022, 893: 140-151. https://doi.org/10.1007/978-981-19-1742-4_11

[23]      Wang X., Boon C. C., Yang K., Kong L., (2021), A 20–80 MHz continuously tunable Gm-C low-pass filter for ultra-low power WBAN receiver front-end. IEEE Acc. 9: 154136– 154142.  https://doi.org/10.1109/ACCESS.2021.3128154

[24]     Ballo A., Grasso A. D., Pennisi S., Venezia C., (2020), High frequency low-current second-order bandpass active filter topology and its design in 28-nm FD-SOI CMOS. J. Low Pow. Elec. Appl. 10: 124-135.  http://dx.doi.org/10.3390/jlpea10030027

[25]     Kousai S., Hamada M., Ito R., Itakura T., (2007), A 19.7 MHz, fifth order active-RC chebyshev LPF for draft IEEE802.11n with automatic quality-factor tuning scheme. IEEE J. Sol. Sta. Cir. 42: 2326–2337. https://doi.org/10.1109/JSSC.2007.906189

[26]      Aminzadeh H., Lotfi R., Mafinezhad K., (2009), Design of low-power single-stage operational amplifiers based on an optimized settling model. Ana. Integr. Cir. Sig. Process.  58: 153–160.  https://doi.org/10.1007/s10470-008-9226-1

[27]     Hori S., Maeda T., Matsuno N., Hida H., (2004), Low-power widely tunable Gm-C filter with an adaptive DC-blocking, triode-biased MOSFET transconductor. Proc. 30th Eur. Sol. Sta. Cir. Conf. 99–102. https://doi.org/10.1109/ESSCIR.2004.1356627

[28]     Ismail A. M., Soliman A. M., (2000), Novel CMOS wide linear range transconductance amplifier. IEEE Trans. Cir. Syst. Fundam. The. Appl. 47: 1248–1253. https://doi.org/10.1109/81.873880

[29]      Kuo K. C., Leuciuc A., (2001), A linear MOS transconductor using source degeneration and adaptive biasing. IEEE Trans. Cir. Syst. II Ana. Digit. Sig. Pro. 48: 937–943. https://doi.org/10.1109/82.974782

[30]      Sengupta S., (2005), Adaptively biased linear transconductor. IEEE Trans. Cir. Syst. 52: 2369–2375. https://doi.org/10.1109/TCSI.2005.853516

[31]     Abdolmaleki M., Dousti M., Tavakoli M. B., (2019), Design and simulation of tunable low-pass Gm-C filter with 1 GHz cutoff frequency based on CMOS inventers for high speed telecommunication applications. Analog Integr. Circ. Sig. Process. 100: 279–286. https://doi.org/10.1007/s10470-019-01484-0

[32]      Bocciarelli C., Centurelli F., Monsurrò P., Spinogatti V., Trifiletti A., (2021), A class AB linear transconductor with enhanced linearity. AEU - Int. J. Elec. Comm. 140: 153-159. https://doi.org/10.1016/j.aeue.2021.153955.

[33]     Wu J., Xie Z., Yu T., Chen C., (2018), A wide tuning range Gm-C complex filter with master-slave automatic frequency tuning based switched-capacitor. Microelectron. J. 81: 200–207. https://doi.org/10.1016/j.mejo.2018.04.009

[34]      Lewinski A., Martinez J., (2006), A high-frequency transconductor using a robust nonlinearity cancellation. IEEE Trans. Cir. Syst. II Exp. Bri. 53: 896–900. https://doi.org/10.1109/TCSII.2006.880025

[35]     Mohammed M. A., Roberts G. W., (2021), A scalable many-stage CMOS OTA for closed-loop applications. IEEE Int. Sym. on Cir. and Sys. (ISCAS), Daegu, Korea.   1-5. https://doi.org/10.1109/ISCAS51556.2021.9401697

[36]      Ismail S. H., Soliman E. A., Mahmoud S. A., (2011), Cascaded third-order tunable low-pass filter using low voltage low power OTA. Int. Sym. Int. Cir. Singapore. 488-491. https://doi.org/10.1109/ISICir.2011.6132003

[37]      Rekha S., Laxminidhi T., (2011), Low power fully differential, feed-forward compensated bulk driven OTA. Association of Thailand. Conf. IEEE. 90-93. https://doi.org/10.1109/ECTICON.2011.5947778

[38]     Ghasemi A. R., Aminzadeh H., Ballo A., (2023), Ladder-type Gm−C filters with improved linearity. IEEE Acc. 11: 41503-41513. https://doi.org/10.1109/ACCESS.2023.3270372

[39]     Rahman M., Rahaman F., Hossan M., (2021), Integrated CMOS active low-pass filter for IoT RFID transceiver. ICST Ins. Com. Sci. https://doi.org/10.1007/978-3-030-90016-8_5

[40]     Oliveira P. C., Aguirre D., Severo L. C., Girardi A. G., Susin A. A., (2016), A digitally tunable 4th order Gm-C low pass filter for multi standards receivers. 29th Symp. Int. Cir. Sys. Des. (SBCCI). 1–6. https://doi.org/10.1109/SBCCI.2016.7724064

[41]     Zadeh S. A., Sheikhaei S., Forouzandeh B, (2013), A 0.9 V Supply OTA in 0.18 μm CMOS technology and its application in realizing a tunable low pass Gm-C filter for wireless sensor networks. Cir. Sys. 4: 37-46. http://dx.doi.org/10.4236/cs.2013.41007