skip to main content
Menu
Review Article

Superhydrophobic wonders: A comprehensive review of nanomaterial-based surfaces and their myriad applications

Authors

Abstract

Superhydrophobic surfaces (SHSs) exhibit exceptional water repellency characterized by a high contact angle (>150°), extremely low surface energy, and minimal sliding angle (<5°). They demonstrate minimal contact angle hysteresis (<10°) and excellent Cassie-Baxter state stability. These properties, attributed to the surface’s unique micro- and nano-structures or tailored chemical composition, induce a non-wetting behavior. SHSs hold significant promise for a wide range of applications due to their captivating functionalities, including efficient oil-water separation, drag reduction, anti-fogging, anti-biofouling, self-cleaning capabilities, and more. Their inherent durability and diverse functionalities render them attractive for various commercial and everyday applications. This review provides a comprehensive overview of the materials and fabrication processes employed to create SHSs, encompassing micro- and nano-structuring techniques, chemical modification strategies, and superhydrophobic coating deposition methods. We further delve into the extensive and multifaceted applications of SHSs across the transportation, energy, and biomedical engineering sectors. Despite their demonstrated potential, challenges persist in the development and practical implementation of SHSs. addressing these challenges necessitates continued research and innovation. This review aims to stimulate further progress in the field by identifying potential future research directions and unlocking the full potential of SHSs for groundbreaking applications.

Graphical Abstract

Keywords

References

1.      Jeevahan, J., Chandrasekaran, M., Britto Joseph, G., Durairaj, R.B. and Mageshwaran, G. (2018), Superhydrophobic surfaces: A review on fundamentals, applications, and challenges, J. Coat. Technol. Res., 15(2), pp. 231–250. https://doi.org/10.1007/s11998-017-0011-x

2.       Barthlott, W. and Neinhuis, C. (1997), Purity of the sacred lotus, or escape from contamination in biological surfaces, Planta, 202(1), pp. 1–8. https://doi.org/10.1007/s004250050096

3.      Cheng, Y.-T. and Rodak, D.E. (2005), Is the lotus leaf superhydrophobic?, Appl. Phys. Lett., 86(14), pp. 144101. https://doi.org/10.1063/1.1895487

4.      Forbes, P. (2008), Self-cleaning materials, Sci. Am., 299(2), pp. 88-95. https://doi.org/10.1038/scientificamerican0808-88

5.      Nishimoto, S. and Bhushan, B. (2013), Bioinspired self-cleaning surfaces with superhydrophobicity, superoleophobicity, and superhydrophilicity, RSC Adv., 3(3), pp. 671–690. https://doi.org/10.1039/C2RA21260A

6.      Boinovich, L.B. (2013), Superhydrophobic coatings as a new class of polyfunctional materials, Her. Russ. Acad. Sci., 83, pp. 8–18. https://doi.org/10.1134/S1019331613010024

7.      Bhushan, B. (2009), Biomimetics: lessons from nature–an overview, Phil. Trans. R. Soc. A, 367, pp. 1445–1486. https://doi.org/10.1098/rsta.2009.0011

8.      Gao, X. and Jiang, L. (2004), Water-repellent legs of water striders, Nature, 432, p. 36. https://doi.org/10.1038/432036a

9.      Zhang, J., Huang, X., Xiong, Y., Zheng, W., Liu, W., He, M., Li, L., Liu, J., Lu, L. and Peng, K. (2022), Spider silk bioinspired superhydrophilic nanofibrous membrane for efficient oil/water separation of nanoemulsions, Sep. Purif. Technol., 280, p. 119824. https://doi.org/10.1016/j.seppur.2021.119824

10.  Revaiah, R.G., Kotresh, T.M. and Kandasubramanian, B. (2019), Technical textiles for military applications, J. Text. Inst., 111(2), pp. 273–308. https://doi.org/10.1080/00405000.2019.1627987

11.  Parvate, S., Dixit, P. and Chattopadhyay, S. (2020), Superhydrophobic surfaces: Insights from theory and experiment, J. Phys. Chem. B, 124(8), pp. 1323–1360. https://doi.org/10.1021/acs.jpcb.9b08567

12.  Koch, K., Bhushan, B. and Barthlott, W. (2009), Multifunctional surface structures of plants: An inspiration for biomimetics, Prog. Mater. Sci., 54(2), pp. 137–178. https://doi.org/10.1016/j.pmatsci.2008.07.003

13.  Markna, J.H. and Rathod, P.K. (2022), Review on the efficiency of quantum dot sensitized solar cell: Insights into photoanodes and QD sensitizers, Dyes Pigments, 199, p. 110094. https://doi.org/10.1016/j.dyepig.2022.110094

14.  Manoharan, K. and Bhattacharya, S. (2019), Superhydrophobic surfaces review: Functional application, fabrication techniques and limitations, J. Micromanuf., 2(1), pp. 59–78. https://doi.org/10.1177/2516598419836345

15.  Liao, R., Zuo, Z., Guo, C., Yuan, Y. and Zhuang, A. (2014), Fabrication of superhydrophobic surface on aluminum by continuous chemical etching and its anti-icing property, Appl. Surf. Sci., 317, pp. 701–709. https://doi.org/10.1016/j.apsusc.2014.08.187

16.  Sotoudeh, F., Mousavi, S.M., Karimi, N., Lee, B.J., Abolfazli-Esfahani, J. and Manshadi, M.K.D. (2023), Natural and synthetic superhydrophobic surfaces: A review of the fundamentals, structures, and applications, Alexandria Eng. J., 68, pp. 587–609. https://doi.org/10.1016/j.aej.2023.01.058

17.  Yan, Y.Y., Gao, N. and Barthlott, W. (2011), Mimicking natural superhydrophobic surfaces and grasping the wetting process: A review on recent progress in preparing superhydrophobic surfaces, Adv. Colloid Interface Sci., 169(2), pp. 80–105. https://doi.org/10.1016/j.cis.2011.08.005

18.  Han, M., Go, S. and Ahn, Y. (2012), Fabrication of superhydrophobic surface on magnesium substrate by chemical etching, Bull. Korean Chem. Soc., 33(4), pp. 1363-1366. http://dx.doi.org/10.5012/bkcs.2012.33.4.1363

19.  Li, X.-M., Reinhoudt, D. and Crego-Calama, M. (2007), What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces, Chem. Soc. Rev., 36(8), pp. 1350. https://doi.org/10.1039/b602486f

20.  Nakajima, A., Hashimoto, K., Watanabe, T., Takai, K., Yamauchi, G. and Fujishima, A. (2000), Transparent superhydrophobic thin films with self-cleaning properties, Langmuir, 16, pp. 7044-7047. https://doi.org/10.1021/LA000155K

21.  Fürstner, R., Barthlott, W., Neinhuis, C. and Walzel, P. (2005), Wetting and self-cleaning properties of artificial superhydrophobic surfaces, Langmuir, 21(3), pp. 956–961. https://doi.org/10.1021/la0401011

22.  Miwa, M., Nakajima, A., Fujishima, A., Hashimoto, K., & Watanabe, T. (2000). Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces. Langmuir, 16(13), 5754–5760. https://doi.org/10.1021/la991660o

23.  Blossey, R. (2003). Self-cleaning surfaces — virtual realities. Nature Mater, 2(5), 301–306. https://doi.org/10.1038/nmat856

24.  Gould, P. (2003). Smart, clean surfaces. Mater. Today, 6(11), 44–48. https://doi.org/10.1016/S1369-7021(03)01131-3

25.  Zhang, X., Shi, F., Niu, J., Jiang, Y., & Wang, Z., (2008), Superhydrophobic surfaces: From structural control to functional application, J. Mater. Chem., 18, pp. 621-633. http://dx.doi.org/10.1039/b711226b

26.  Bhushan, B., Jung, Y.C. & Koch, K., (2009), Self-cleaning efficiency of artificial superhydrophobic surfaces, Langmuir, 25(5), pp. 3240-3248. https://doi.org/10.1021/la803860d.

27.  Levkin, P.A., Svec, F. & Fréchet, J.M.J., (2009), Porous polymer coatings: a versatile approach to superhydrophobic surfaces, Adv. Funct. Mater., 19(12), pp. 1993-1998. https://doi.org/10.1002/adfm.200801916.

28.  Dorvee, J.R., Derfus, A.M., Bhatia, S.N. & Sailor, M.J., (2004), Manipulation of liquid droplets using amphiphilic, magnetic one-dimensional photonic crystal chaperones, Nat. Mater., 3(12), pp. 896-899. https://doi.org/10.1038/nmat1253.

29.  Suh, Y., Park, M.C. & Kim, P., (2009), Capillary force lithography: A versatile tool for structured biomaterials interface towards cell and tissue engineering, Adv. Funct. Mater., 19(17), pp. 2699-2712. https://doi.org/10.1002/adfm.200900771.

30.  Boinovich, L. & Emelyanenko, A., (2009), Principles of design of superhydrophobic coatings by deposition from dispersions, Langmuir, 25(5), pp. 2907-2912. https://doi.org/10.1021/la803806w.

31.  Guo, Z.G., Fang, J., Hao, J.C., Liang, Y.M. & Liu, W.M., (2006), A novel approach to stable superhydrophobic surfaces, ChemPhysChem, 7(8), pp. 1674-1677. https://doi.org/10.1002/cphc.200600217.

32.  Shirtcliffe, N.J., McHale, G., Newton, M.I., Chabrol, G. & Perry, C.C., (2004), Dual-scale roughness produces unusually water-repellent surfaces, Adv. Mater., 16(21), pp. 1929-1932. https://doi.org/10.1002/adma.200400315.

33.  Huang, Y., Wu, J. & Yang, S., (2011), Direct fabricating patterns using stamping transfer process with PDMS mold of hydrophobic nanostructures on surface of micro-cavity, Microelectron. Eng., 88(6), pp. 849-854. https://doi.org/10.1016/j.mee.2010.08.006.

34.  Yang, T., Tian, H. & Chen, Y., (2009), Preparation of superhydrophobic silica films with honeycomb-like structure by emulsion method, J Sol-Gel Sci Technol, 49, pp. 243–246. https://doi.org/10.1007/s10971-008-1855-4

35.  Ma, M., Mao, Y., Gupta, M., Gleason, K.K. & Rutledge, G.C., (2005), Superhydrophobic fabrics produced by electrospinning and chemical vapor deposition, Macromolecules, 38(23), pp. 9742–9748. https://doi.org/10.1021/ma0511189

36.  Bayer, I. S. (2020). Superhydrophobic coatings from ecofriendly materials and processes: A review. Adv. Mater. Interfaces, 7(13), 2000095. https://doi.org/10.1002/admi.202000095

37.  Ashani, H. R., Parikh, S. P., & Markna, J. (2015). Role of nanotechnology in concrete a cement based material: A critical review on mechanical properties and environmental impact. International Journal of Nanoscience and Nanoengineering, 2(5), 32–35.

38.  Ashani, H. R. A., Parikh, S. P. P., & Markna, J. H. M. (2021). Amalgamation of nano carbon for the advancement of the performance in mechanical properties of the concrete: A cementitious material. Adv. Mater. Proc., 2(11), 711–715. https://doi.org/10.5185/amp.2017/732

39.  Sadeghi, B., Sadjadi, M. A. S., Pourahmad, A. (2008). 'Effects of protective agents (PVA & PVP) on the formation of silver nanoparticles', International Journal of Nanoscience and Nanotechnology, 4(1), pp. 3-12.

40.  Moradiya, M. A., Dangodara, A., Pala, J., Savaliya, C. R., Dhruv, D., Rathod, V. R., Joshi, A. D., Shah, N. A., Pandya, D., & Markna, J. H. (2019). A natural tomato slurry as a photosensitizer for dye-sensitized solar cells with TiO2/CuO composite thin films. Sep. Sci. Technol., 54(2), 207–212. https://doi.org/10.1080/01496395.2018.1444053

41.  Sohrabnezhad, S., Pourahmad, A., Sadjadi, M.S., & Sadeghi, B. (2008). Nickel cobalt sulfide nanoparticles grown on AlMCM-41 molecular sieve. Physica E: Low-Dimensional Systems and Nanostructures, 40(3), 684–688. https://doi.org/10.1016/j.physe.2007.09.081

42.  Tank, J., (2024), Performance Enhancement of Solar Thermal Systems Using Nanofluids: A Review, J. Sustainable Mater. Process. Manage., 4(1), pp. 24-39. Available at: https://publisher.uthm.edu.my/ojs/index.php/jsmpm/article/view/16280 (Accessed: 5 July 2024).

43.  Ramani, R.V., Saparia, A.D., Maniar, N.P., Markna, J.H., & Gujarat Technological University. (2023). Experimental investigation on nanoparticles suspended liquid (NSL) as the heat transfer fluid (HTF) for solar evacuated tube collector. J. Sustain. Mater. Process. Manag., 3(1). https://doi.org/10.30880/jsmpm.2023.03.01.006

44.  Ramani, R.V., Saparia, A.D., Markna, J.H., & Department of Nanotechnology, Gujarat Technological University. (2022). Effect of nanocoating (CuO nanoparticles) on the performance of solar evacuated tube. J. Sustain. Mater. Process. Manag., 2(1). https://doi.org/10.30880/jsmpm.2022.02.01.008

45.  Rathod, P.K., Solanki, P., Kataria, B., & Markna, J.H. (2024). Optimisation and numerical analysis of highly efficient CGSe-based thin film solar cell. Phys. Scr., 99(2), 025923. https://doi.org/10.1088/1402-4896/ad1906

46.  Celik, N., Sezen, B., Sahin, F., Ceylan, A., Ruzi, M., & Onses, M. S., (2023), Mechanochemical Coupling of Alkylsilanes to Nanoparticles for Solvent-Free and Rapid Fabrication of Superhydrophobic Materials, ACS Appl. Nano Mater., 6(16), pp. 14921-14930. Available at: https://doi.org/10.1021/acsanm.3c02489 (Accessed: 5 July 2024).

47.  Latthe, S.S., Gurav, A.B., Maruti, C.S., & Vhatkar, R.S. (2012). Recent progress in preparation of superhydrophobic surfaces: A review. J. Surf. Eng. Mater. Adv. Technol., 2(2), 76–94. https://doi.org/10.4236/jsemat.2012.22014

48.  Rathod, K.N., Savaliya, C., Babiya, K.R., Vasvani, S.H., Ramani, R.V., Ramani, B.M., Joshi, A.D., Pandya, D., Shah, N.A., & Markna, J.H. (2017). Preparation of CuO quantum dots by cost-effective ultrasonication technique. Int. J. Nanosci., 16(05n06), 1750019. https://doi.org/10.1142/S0219581X17500193

49.  Jin, M., Xing, Q., & Chen, Z. (2020). A review: Natural superhydrophobic surfaces and applications. J. Biomater. Nanobiotechnol., 11(2), 110–149. https://doi.org/10.4236/jbnb.2020.112008

50.  Ali, H.M., Qasim, M.A., Malik, S., & Murtaza, G. (2018). Techniques for the fabrication of super-hydrophobic surfaces and their heat transfer applications. In K. Volkov (Ed.), Heat transfer—models, methods and applications. InTech. https://doi.org/10.5772/intechopen.72820

51.  Xing, L., Liu, C., Zhang, Q., Yu, J., Gong, X., Yu, D., Dai, C., & Feng, Y. (2023). Synergistic effect of micro-and nano-structure for superhydrophobic surfaces. Mater. Today Commun., 34, 105229. https://doi.org/10.1016/j.mtcomm.2022.105229

52.  Shi, S., Wang, X., Li, Z., Meng, J., Chu, X., Zhang, P., Sun, B., Zhang, J., Gao, Y., & Xu, W. (2023). Multifunctional integrated superhydrophobic coatings with unique fluorescence and micro/micro/nano-hierarchical structures enabled by in situ self-assembly. ACS Appl. Mater. Interfaces, 15(5), 7442–7453. https://doi.org/10.1021/acsami.2c21531

53.  Rajab, F. H., Liu, Z., & Li, L. (2019). Long term superhydrophobic and hybrid superhydrophobic/superhydrophilic surfaces produced by laser surface micro/nano surface structuring. Appl. Surf. Sci., 466, 808–821. https://doi.org/10.1016/j.apsusc.2018.10.099

54.  Lima, A. C., & Mano, J. F. (2015). Micro-/nano-structured superhydrophobic surfaces in the biomedical field: part I: basic concepts and biomimetic approaches. Nanomedicine (Lond.), 10(1), 103–119. https://doi.org/10.2217/nnm.14.174

55.  Esmaeili, A. R., Mir, N., & Mohammadi, R. (2020). A facile, fast, and low-cost method for fabrication of micro/nano-textured superhydrophobic surfaces. J. Colloid Interface Sci., 573, 317–327. https://doi.org/10.1016/j.jcis.2020.04.027

 56.  Qi, Y., Yang, Z., Chen, T., Xi, Y., & Zhang, J. (2020). Fabrication of superhydrophobic surface with desirable anti-icing performance based on micro/nano-structures and organosilane groups. Appl. Surf. Sci., 501, 144165. https://doi.org/10.1016/j.apsusc.2019.144165

57.  Su, Y., Ji, B., Zhang, K., Gao, H., Huang, Y., & Hwang, K. (2010). Nano to micro structural hierarchy is crucial for stable superhydrophobic and water-repellent surfaces. Langmuir, 26(7), 4984-4989. https://doi.org/10.1021/la9036452 

58.  Gogolides, E., Ellinas, K., & Tserepi, A. (2015). Hierarchical micro and nano structured, hydrophilic, superhydrophobic and superoleophobic surfaces incorporated in microfluidics, microarrays and lab on chip microsystems. Microelectron. Eng., 132, 135-155. https://doi.org/10.1016/j.mee.2014.10.002

59.  Noh, J., Lee, J.-H., Na, S., Lim, H., & Jung, D.-H. (2010). Fabrication of hierarchically micro-and nano-structured mold surfaces using laser ablation for mass production of superhydrophobic surfaces. Jpn. J. Appl. Phys., 49, 106502. https://doi.org/10.1143/JJAP.49.106502

60.  Jaysukh H. Markna. (2018, December 14). superhydrophobic... PDMS Coating. International conference on advanced materials, energy and environmental sustainability (ICAMEES-2018), Department of Chemistry and Physics, UPES, Dehradun, India.

61.  Markna, J.H., (2017), Novel Surface Treatment to Achieve Superhydrophobic Surfaces: La0.5 Pr0.2 Mno3 (LPSMO)–PDMS Nanocomposite Coating. In: 4th International Conference on Nanoscience and Nanotechnology (ICONM2017), SRM University, Kattankulathur, in association with Shizuoka University, Japan, GNS Science, New Zealand, and National Chiao Tung University, Taiwan.

62.  Pan, R., Cai, M., Liu, W., Luo, X., Chen, C., Zhang, H., & Zhong, M. (2019). Extremely high Cassie-Baxter state stability of superhydrophobic surfaces via precisely tunable dual-scale and triple-scale micro–nano structures. J. Mater. Chem. A, 7(30), 18050–18062. https://doi.org/10.1039/C9TA04484A

63.  Przybylak, M., Maciejewski, H., Dutkiewicz, A. et al. (2016). Fabrication of superhydrophobic cotton fabrics by a simple chemical modification. Cellulose, 23, 2185–2197. https://doi.org/10.1007/s10570-016-0940-z

64.  Zhang, Y., & Shen, X. (2023). Facile fabrication of robust superhydrophobic coating for enhanced corrosion protection on AZ91 magnesium alloy by electroless Ni-B/GO plating. Surf. Coat. Technol., 455, 129213. https://doi.org/10.1016/j.surfcoat.2022.129213

65.  Sun, G., Zhao, Z., Mu, R., Zha, S., Li, L., Chen, S., Zang, K., Luo, J., Li, Z., Purdy, S. C., Kropf, A. J., Miller, J. T., Zeng, L., & Gong, J. (2018). Breaking the scaling relationship via thermally stable Pt/Cu single atom alloys for catalytic dehydrogenation. Nat. Commun., 9(1), 1-9. https://doi.org/10.1038/s41467-018-06967-8

66.  Zhang, Y., Zhang, Z., Yang, J., Yue, Y., & Zhang, H. (2021). A Review of Recent Advances in Superhydrophobic Surfaces and Their Applications in Drag Reduction and Heat Transfer. Nanomaterials, 12(1), 44. https://doi.org/10.3390/nano12010044

67.  Chen, Q., Zhang, C., Cai, Y., Luo, X., Wang, B., Song, Q., & Liu, Z. (2023). Periodically oriented superhydrophobic microstructures prepared by laser ablation-chemical etching process for drag reduction. Appl. Surf. Sci., 615, 156403. https://doi.org/10.1016/j.apsusc.2023.156403

68.  Zhu, S., Deng, W., & Su, Y. (2023). Recent advances in preparation of metallic superhydrophobic surface by chemical etching and its applications. Chin. J. Chem. Eng., 61, 221-236. https://doi.org/10.1016/j.cjche.2023.02.018

69.  Kim, B., Seo, S., Bae, K., Kim, D., Baek, C., & Kim, H. (2013). Stable superhydrophobic si surface produced by using reactive ion etching process combined with hydrophobic coatings. Surface and Coatings Technology, 232, 928-935. https://doi.org/10.1016/j.surfcoat.2013.07.002

70.  Li, Y., Dai, S., John, J., & Carter, K. R. (2013). Superhydrophobic surfaces from hierarchically structured wrinkled polymers. ACS Appl. Mater. Interfaces, 5(21), 11066-11073. https://doi.org/10.1021/am403209r

71.  Barati Darband, Gh., Aliofkhazraei, M., Khorsand, S., Sokhanvar, S., & Kaboli, A. (2020). Science and Engineering of Superhydrophobic Surfaces: Review of Corrosion Resistance, Chemical and Mechanical Stability. Arab. J. Chem., 13(1), 1763–1802. https://doi.org/10.1016/j.arabjc.2018.01.013

72.  Li, B., Bai, J., He, J., Ding, C., Dai, X., Ci, W., Zhu, T., Liao, R., & Yuan, Y. (2023). A Review on Superhydrophobic Surface with Anti-Icing Properties in Overhead Transmission Lines. Coatings, 13(2), 301. https://doi.org/10.3390/coatings13020301

73.  Song, X.G., Liang, Z.H., Wang, H.J. et al., (2023), Fabrication of functional surfaces of aluminum alloy with a transition from superhydrophilic to superhydrophobic by nanosecond laser irradiation, J. Coat. Technol. Res., 20, pp. 1897–1912. https://doi.org/10.1007/s11998-023-00785-4

74.  Barati Darband, G., Aliofkhazraei, M., Khorsand, S., Sokhanvar, S., & Kaboli, A. (2019). Science and Engineering of Superhydrophobic Surfaces: Review of Corrosion Resistance, Chemical and Mechanical Stability. Arabian J. Chem. 13(1), 1763-1802. https://doi.org/10.1016/j.arabjc.2018.01.013

75.  Chakraborty, A., Gottumukkala, N. R., & Gupta, M. C. (2023). Superhydrophobic Surface by Laser Ablation of PDMS. Langmuir, 39(32), 11259–11267. https://doi.org/10.1021/acs.langmuir.3c00818

76.  Jafari Eskandari, M., Araghchi, M., & Daneshmand, H. (2022). Aluminum oxide nanotubes fabricated via laser ablation process: Application as superhydrophobic surfaces. Optics & Laser Technology, 155, 108420. https://doi.org/10.1016/j.optlastec.2022.108420

77.  Yong, J., Yang, Q., Guo, C., Chen, F., & Hou, X. (2019). A review of femtosecond laser-structured superhydrophobic or underwater superoleophobic porous surfaces/materials for efficient oil/water separation. RSC Adv., 9(22), 12470–12495. https://doi.org/10.1039/c8ra10673h

78.  Wang, Y., Xue, J., Wang, Q., Chen, Q., & Ding, J. (2013). Verification of icephobic/anti-icing properties of a superhydrophobic surface. ACS Applied Materials & Interfaces, 5(8), 3370–3381. https://doi.org/10.1021/am400429q

79.  Li, X., Su, H., Li, H., Tan, X., Lin, X., Wu, Y., Xiong, X., Li, Z., Jiang, L., & Xiao, T. (2023). Photothermal superhydrophobic surface with good corrosion resistance, anti-/de-icing property and mechanical robustness fabricated via multiple-pulse laser ablation. Applied Surface Science, 158944. https://doi.org/10.1016/j.apsusc.2023.158944

80.  Sanjay, S. L., Annaso, B. G., Chavan, S. M., & Rajiv, S. V. (2012). Recent progress in preparation of superhydrophobic surfaces: A review. Journal of Surface Engineered Materials and Advanced Technology, 2012. http://dx.doi.org/10.4236/jsemat.2012.22014

81.  Nguyen-Tri, P., Altiparmak, F., Nguyen, N., Tuduri, L., Ouellet-Plamondon, C. M., & Prud’homme, R. E. (2019). Robust superhydrophobic cotton fibers prepared by simple dip-coating approach using chemical and plasma-etching pretreatments. ACS Omega, 4(4), 7829–7837. https://doi.org/10.1021/acsomega.9b00488

82.  Ellinas, K., Tserepi, A., & Gogolides, E. (2017). Durable superhydrophobic and superamphiphobic polymeric surfaces and their applications: A review. Adv. Colloid Interface Sci., 250, 132–157. https://doi.org/10.1016/j.cis.2017.07.003

83.  Li, X.-M., Reinhoudt, D., & Crego-Calama, M. (2007). What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces. Chem. Soc. Rev., 36(8), 1350–1368. https://doi.org/10.1039/B602486F

84.  Ren, H.-T., Cai, C.-C., Cao, W.-B., Li, D.-S., Li, T.-T., Lou, C.-W. & Lin, J.-H., (2023), Superhydrophobic TiN-coated cotton fabrics with nanoscale roughness and photothermal self-healing properties for effective oil–water separation, ACS Appl. Nano Mater., 6(13), pp. 11925–11933. https://doi.org/10.1021/acsanm.3c0176

85.  Dimitrakellis, P. & Gogolides, E., (2018), Atmospheric plasma etching of polymers: a palette of applications in cleaning/ashing, pattern formation, nanotexturing and superhydrophobic surface fabrication, Microelectron. Eng., 194, pp. 109-115. Accessed July 5, 2024. https://doi.org/10.1016/j.mee.2018.03.017

86.  Chen, Y., Zhang, Y., Shi, L., Li, J., Xin, Y., Yang, T. & Guo, Z., (2012), Transparent superhydrophobic/superhydrophilic coatings for self-cleaning and anti-fogging, Appl. Phys. Lett., 101, p. 033701. https://doi.org/10.1063/1.4737167

87.  Valipour Motlagh, N., Birjandi, F. Ch., Sargolzaei, J. & Shahtahmassebi, N., (2013), Durable, superhydrophobic, superoleophobic and corrosion resistant coating on the stainless steel surface using a scalable method, Appl. Surf. Sci., 283, pp. 636-647. Accessed July 5, 2024. https://doi.org/10.1016/j.apsusc.2013.06.160

88.  Kim, J., Mirzaei, A., Kim, H.W. & Kim, S.S., (2018), Facile fabrication of superhydrophobic surfaces from austenitic stainless steel (AISI 304) by chemical etching, Appl. Surf. Sci., 439, pp. 598-604. Accessed July 5, 2024. https://doi.org/10.1016/j.apsusc.2017.12.211

89.  Ellinas, K., Dimitrakellis, P., Sarkiris, P. & Gogolides, E., (2021), A review of fabrication methods, properties and applications of superhydrophobic metals, Processes, 9(4), p. 666. Accessed July 5, 2024. https://doi.org/10.3390/pr9040666

90.  Rao, P.N. & Kunzru, D., (2007), Fabrication of microchannels on stainless steel by wet chemical etching, J. Micromech. Microeng., 17(12), pp. N99-N106. https://doi.org/10.1088/0960-1317/17/12/n01

91.  Jeżowski, P., Nowicki, M., Grzeszkowiak, M., Czajka, R., and Béguin, F., (2015), Chemical etching of stainless steel 301 for improving performance of electrochemical capacitors in aqueous electrolyte, J. Power Sources, 279, 555-562. https://doi.org/10.1016/j.jpowsour.2015.01.027

92.  Liao, R., Zuo, Z., Guo, C., Yuan, Y., and Zhuang, A., (2014), Fabrication of superhydrophobic surface on aluminum by continuous chemical etching and its anti-icing property, Appl. Surf. Sci., 317, 701-709. https://doi.org/10.1016/j.apsusc.2014.08.187

93.  Jeevahan, J., Chandrasekaran, M., Britto Joseph, G., Durairaj, R., and Mageshwaran, G., (2018), Superhydrophobic surfaces: a review on fundamentals, applications, and challenges, J. Coat. Technol. Res., 15, 231-250. https://doi.org/10.1007/s11998-017-0011-x

94.  Xi, J., Feng, L., and Jiang, L., (2008), A general approach for fabrication of superhydrophobic and superamphiphobic surfaces, Appl. Phys. Lett., 92(5), p. 053102. https://doi.org/10.1063/1.2839403

95.  Jin, M., Xing, Q.Q., and Chen, Z., (2020), A review: natural superhydrophobic surfaces and applications, J. Biomater. Nanobiotechnol., 11, 110-149. https://doi.org/10.4236/jbnb.2020.112008

96.  Chen, J., Liu, J., He, M., Li, K., Cui, D., Zhang, Q., Zeng, X., Zhang, Y., Wang, J., and Song, Y., (2012), Superhydrophobic surfaces cannot reduce ice adhesion, Appl. Phys. Lett., 101(11), 111603. https://doi.org/10.1063/1.4752436

97.  Sung, Y.H., Kim, Y.D., Choi, H., Shin, R., Kang, S., and Lee, H., (2015), Fabrication of superhydrophobic surfaces with nano-in-micro structures using UV-nanoimprint lithography and thermal shrinkage films, Appl. Surf. Sci., 349, 169-173. https://doi.org/10.1016/j.apsusc.2015.04.141

98.  Pozzato, A., Zilio, S.D., Fois, G., Vendramin, D., Mistura, G., Belotti, M., Chen, Y., and Natali, M., (2006), Superhydrophobic surfaces fabricated by nanoimprint lithography, Microelectron. Eng., 83(4-9), 884-888. https://doi.org/10.1016/j.mee.2006.01.012

99.  Zhang, X., Wei, C., Hao, Y., Yan, Z., Yan, X., Chen, Y., Guo, X., and Lang, W., (2023), Robust superhydrophobic PVDF membrane constructed by template-assisted strategy via thermally induced phase separation for rapid water-in-oil emulsions separation, Chem. Eng. Sci., 282, 119325. https://doi.org/10.1016/j.ces.2023.119325

100. Puliyalil, H., Filipič, G., and Cvelbar, U., (2015), Recent advances in the methods for designing superhydrophobic surfaces, Mater. Sci. https://doi.org/10.5772/60852

101. Peng, J., Han, W., Tan, Y., Zhang, N., Yin, Y., and Wang, C., (2023), A highly sensitive, superhydrophobic fabric strain sensor based on polydopamine template-assisted synergetic conductive network, Appl. Surf. Sci., 617, 156535. https://doi.org/10.1016/j.apsusc.2023.156535

102. Puliyalil, H., Filipič, G., and Cvelbar, U., (2015), Recent advances in the methods for designing superhydrophobic surfaces, (online), https://doi.org/10.5772/60852

103. Roach, P., Shirtcliffe, N.J., and Newton, M.I., (2008), Progress in superhydrophobic surface development, Soft Matter, 4(2), 224-240. https://doi.org/10.1039/B712575P

104. Wang, Y., Wang, M., and Ge, X., (2014), Fabrication of superhydrophobic three-dimensionally ordered macroporous polytetrafluoroethylene films and its application, Langmuir, 30(36), 10804-10808. https://doi.org/10.1021/la502866h

105. Li, J., Fu, J., Cong, Y., Wu, Y., Xue, L., and Han, Y., (2006), Macroporous fluoropolymeric films templated by silica colloidal assembly: A possible route to super-hydrophobic surfaces, Appl. Surf. Sci., 252(6), 2229-2234. https://doi.org/10.1016/j.apsusc.2005.04.104

106. Zhang, F., Shi, Z., Chen, L., Jiang, Y., Xu, C., Wu, Z., Wang, Y., and Peng, C., (2017), Porous superhydrophobic and superoleophilic surfaces prepared by template-assisted chemical vapor deposition, Surf. Coat. Technol., 315, 385-390. https://doi.org/10.1016/j.surfcoat.2017.02.058

107. Sun, C., Ge, L., and Gu, Z., (2007), Fabrication of super-hydrophobic film with dual-size roughness by silica sphere assembly, Thin Solid Films, 515(11), 4686-4690. https://doi.org/10.1016/j.tsf.2006.11.027

108. Zhang, Z., Sui, J., Zhang, L., Wan, M., Wei, Y., and Yu, L., (2005), Synthesis of polyaniline with a hollow, octahedral morphology by using a cuprous oxide template, Adv. Mater., 17(23), 2854-2857. https://doi.org/10.1002/adma.200501114

109. Li, Y., Cai, W., Cao, B., Duan, G., Sun, F., Li, C., and Jia, L., (2006), Two-dimensional hierarchical porous silica film and its tunable superhydrophobicity, Nanotechnology, 17(1), 238. https://doi.org/10.1088/0957-4484/17/1/040

110. Pan, L.J., Pu, L., Shi, Y., Song, S.Y., Xu, Z., Zhang, R., and Zheng, Y.D., (2007), Synthesis of polyaniline nanotubes with a reactive template of manganese oxide, Adv. Mater., 19(3), 461-464. https://doi.org/10.1002/adma.200602073

111. Ramani, R.V., Ramani, B.M., Saparia, A.D., Savaliya, C., Rathod, K.N., and Markna, J.H., (2018), Cr–ZnO nanostructured thin film coating on borosilicate glass by cost effective sol–gel dip coating method, Ain Shams Eng. J., 9(4), 777-782. https://doi.org/10.1016/j.asej.2016.04.015

112. Joshi, Z., Dhruv, D., Rathod, K.N., Markna, J.H., Satyaprasad, A., Joshi, A.D., Solanki, P.S., and Shah, N.A., (2018), Size effects on electrical properties of sol–gel grown chromium doped zinc oxide nanoparticles, J. Mater. Sci. Technol., 34(3), 488-495. https://doi.org/10.1016/j.jmst.2017.01.020

113. Wei, X., and Niu, X., (2023), Recent advances in superhydrophobic surfaces and applications on wood, Polymers (Basel), 15(7), 1682. https://doi.org/10.3390/polym15071682

114. Zhou, B., Wu, Y., and Zheng, H., (2022), Investigation of electrochemical assisted deposition of sol-gel silica films for long-lasting superhydrophobicity, Materials, 16(4), 1417. https://doi.org/10.3390/ma16041417

115. Ghodrati, M., and Bahrami, Z., (2023), Synthesis of superhydrophobic coatings based on silica nanostructure modified with organosilane compounds by sol–gel method for glass surfaces, Sci. Rep., 13(1), 1-15. https://doi.org/10.1038/s41598-023-27811-0

116. Mahadik, S.A., and Mahadik, S.S., (2021), Surface morphological and topographical analysis of multifunctional superhydrophobic sol-gel coatings, Ceram. Int., 47(20), 29475-29482. https://doi.org/10.1016/j.ceramint.2021.07.115

117. Ahmad, N.A., Leo, C.P., and Ahmad, A.L., (2013), Superhydrophobic alumina membrane by steam impingement: minimum resistance in microfiltration, Sep. Purif. Technol., 107, 187-194. https://doi.org/10.1016/j.seppur.2013.01.011

118. Hikita, M., Tanaka, K., Nakamura, T., Kajiyama, T., and Takahara, A., (2005), Super-liquid-repellent surfaces prepared by colloidal silica nanoparticles covered with fluoroalkyl groups, Langmuir, 21(16), 7299-7302. https://doi.org/10.1021/la050901r

119. Mahltig, B., and Böttcher, H., (2003), Modified silica sol coatings for water-repellent textiles, J. Sol-Gel Sci. Technol., 27, 43-52. https://doi.org/10.1023/A:1022627926243

120. Pilotek, S., and Schmidt, H., (2003), Wettability of microstructured hydrophobic sol-gel coatings, J. Sol-Gel Sci. Technol., 26, 789-792. https://doi.org/10.1023/A:1020779011844

121. Su, D., Huang, C., Hu, Y., Jiang, Q., Zhang, L., and Zhu, Y., (2011), Preparation of superhydrophobic surface with a novel sol–gel system, Appl. Surf. Sci., 258(2), 928-934. https://doi.org/10.1016/j.apsusc.2011.09.030

122. Rao, A.V., Latthe, S.S., Nadargi, D.Y., Hirashima, H., and Ganesan, V., (2009), Preparation of MTMS based transparent superhydrophobic silica films by sol–gel method, J. Colloid Interface Sci., 332(2), 484-490. https://doi.org/10.1016/j.jcis.2008.12.044

123. Shang, H.M., Wang, Y., Limmer, S.J., Chou, T.P., Takahashi, K., and Cao, G.Z., (2005), Optically transparent superhydrophobic silica-based films, Thin Solid Films, 472(1-2), 37-43. https://doi.org/10.1016/j.tsf.2004.06.087

124. Tadanaga, K., Morinaga, J., and Minami, T., (2000), Formation of superhydrophobic-superhydrophilic pattern on flowerlike alumina thin film by the sol-gel method, J. Sol-Gel Sci. Technol., 19, 211-214. https://doi.org/10.1023/A:1008760325464

125. Sutar, R.S., Latthe, S.S., Gharge, N.B., Gaikwad, P.P., Jundle, A.R., Ingole, S.S., Ekunde, R.A., et al., (2023), Facile approach to fabricate a high-performance superhydrophobic PS/OTS modified SS mesh for oil-water separation, Colloids Surf. A Physicochem. Eng. Asp., 657, 130561. https://doi.org/10.1016/j.colsurfa.2022.130561

126. Ding, D., Wu, Q., Wang, J., Chen, Y., Li, Q., Hou, L., Zhao, L., and Xu, Y., (2023), Superhydrophobic encapsulation of flexible Bi2Te3/CNT coated thermoelectric fabric via layer-by-layer assembly, Compos. Commun., 38, 101509. https://doi.org/10.1016/j.coco.2023.101509

127. Shao, C., Jiang, M., Zhang, J., Zhang, Q., Han, L., and Wu, Y., (2023), Construction of a superhydrophobic wood surface coating by layer-by-layer assembly: self-adhesive properties of polydopamine, Appl. Surf. Sci., 609, 155259. https://doi.org/10.1016/j.apsusc.2022.155259

128. Liu, S., Han, Y., Qie, J., Chen, S., Liu, D., Duo, L., Chen, H., and Lin, Q., (2022), Environment friendly superhydrophobic and transparent surface coating via layer-by-layer self-assembly for antifogging of optical lenses, J. Biomater. Sci. Polym. Ed., 33(7), 847-857. https://doi.org/10.1080/09205063.2021.2021353

129. Desisa, S.T., Dalbaşı, E.S., and Çay, A., (2022), Production of superhydrophobic cotton fabric by layer-by-layer deposition of SiO2/TiO2-polydimethylsiloxane, J. Nat. Fibers, 20, n. pag. https://doi.org/10.1080/15440478.2022.2129899

130. Li, Y., Liu, F., and Sun, J., (2009), A facile layer-by-layer deposition process for the fabrication of highly transparent superhydrophobic coatings, Chem. Commun. (Camb.), (19), 2730-2732. https://doi.org/10.1039/b900804g

131. Yang, J., Li, H., Lan, T., Peng, L., Cui, R., and Yang, H., (2017), Preparation, characterization, and properties of fluorine-free superhydrophobic paper based on layer-by-layer assembly, Carbohydr. Polym., 178, pp. 228-237. https://doi.org/10.1016/j.carbpol.2017.09.040

132. Liu, H., Feng, L., Zhai, J., Jiang, L., and Zhu, D., (2004), Reversible wettability of a chemical vapor deposition prepared ZnO film between superhydrophobicity and superhydrophilicity, Langmuir, 20(14), pp. 5659-5661. https://doi.org/10.1021/la036280o

133. Zhang, L., Chen, H., Sun, J., and Shen, J., (2007), Layer-by-layer deposition of poly (diallyldimethylammonium chloride) and sodium silicate multilayers on silica-sphere-coated substrate—facile method to prepare a superhydrophobic surface, Chem. Mater., 19(4), 948–953. https://doi.org/10.1021/cm0620836

134. Sabzi, M., Mousavi Anijdan, S.H., Shamsodin, M., Farzam, M., Hojjati-Najafabadi, A., Feng, P., Park, N., and Lee, U., (2023), A review on sustainable manufacturing of ceramic-based thin films by chemical vapor deposition (CVD): reactions kinetics and the deposition mechanisms, Coatings, 13, 188. https://doi.org/10.3390/coatings13010188

135. Singh, M., Vasudev, H., and Singh, M., (2023), A short note on the development of thin-film using sputtering process, AIP Conf. Proc., 2800(1), 020268. https://doi.org/10.1063/5.0163946

136. Ahmad Kamal, Shafarina A., Ritikos, R., & Abdul Rahman, S. (2015). Wetting behaviour of carbon nitride nanostructures grown by plasma enhanced chemical vapour deposition technique. Appl. Surf. Sci., 328, 146-153. https://doi.org/10.1016/j.apsusc.2014.12.001

137. Rezaei, S., Manoucheri, I., Moradian, R., & Pourabbas, B. (2014). One-step chemical vapor deposition and modification of silica nanoparticles at the lowest possible temperature and superhydrophobic surface fabrication. Chem. Eng. J., 252, 11-16. https://doi.org/10.1016/j.cej.2014.04.100

138. Coclite, A.M., Shi, Y., & Gleason, K.K. (2012). Controlling the degree of crystallinity and preferred crystallographic orientation in poly-perfluorodecylacrylate thin films by initiated chemical vapor deposition. Advanced Functional Materials, 22. https://doi.org/10.1002/adfm.201103035

139. Dong, X., Chen, J., Ma, Y., Wang, J., Chan-Park, M. B., Liu, X., Wang, L., Huang, W., & Chen, P. (2012). Superhydrophobic and superoleophilic hybrid foam of graphene and carbon nanotube for selective removal of oils or organic solvents from the surface of water. Chemical Communications, 48(86), 10660-10662. doi: http://dx.doi.org/10.1039/C2CC35844A

140. Singh, E., Chen, Z., Houshmand, F., Ren, W., Peles, Y., Cheng, H. M., & Koratkar, N. (2013). Superhydrophobic graphene foams. Small, 9(1), 75-80. doi: https://doi.org/10.1002/smll.201201176

141. Kim, H., Sohn, S., Ahn, J. S. (2013). Transparent and super-hydrophobic properties of PTFE films coated on glass substrate using RF-magnetron sputtering and Cat-CVD methods. Surface and Coatings Technology, 228, S389-S392. Available at: https://doi.org/10.1016/j.surfcoat.2012.05.085.

142. Li, Y., Chen, S., Wu, M., Sun, J. (2014). All spraying processes for the fabrication of robust, self-healing, superhydrophobic coatings. Advanced Materials, 26(20), 3344-3348. Available at: https://doi.org/10.1002/adma.201306136.

143. Deo, D., Singh, S. P., Mohanty, S., et al. (2022). Biomimicking of phyto-based super-hydrophobic surfaces towards prospective applications: a review. Journal of Materials Science, 57, 8569–8596. Available at: https://doi.org/10.1007/s10853-022-07172-1.

144. Li, L., Li, B., Dong, J., & Zhang, J. (2016). Roles of silanes and silicones in forming superhydrophobic and superoleophobic materials. Journal of Materials Chemistry A, 4(36), 13677–13725. https://doi.org/10.1039/c6ta05887g

145. Tang, Y., Sun, K., Du, X., Zhao, J., Wang, H., & Huang, Q. (2023). Superhydrophobic electrospun FPI/PTFE nanofiber membranes for robust vacuum membrane distillation. Separation and Purification Technology, 326, 124856. Available at: https://doi.org/10.1016/j.seppur.2023.124856.

146. Fan, W., Zhang, C., Liu, Y., et al. (2023). An ultra-thin piezoelectric nanogenerator with breathable, superhydrophobic, and antibacterial properties for human motion monitoring. Nano Research, 16, 11612–11620. Available at: https://doi.org/10.1007/s12274-023-5413-8.

147. Shao, W., Liu, S., Wang, K., Niu, J., Zhu, L., Zhu, S., Ren, G., Wang, X., Cao, Y., & Zhang, H. (2023). Using modified raw materials to fabricate electrospun, superhydrophobic poly (lactic acid) multiscale nanofibrous membranes for air-filtration applications. Separation and Purification Technology, 125872. https://doi.org/10.1016/j.seppur.2022.125872

148. Sarkar, M. K., Bal, K., He, F., & Fan, J. (2011). Design of an outstanding super-hydrophobic surface by electro-spinning. Applied Surface Science, 257(15), 7003-7009. Available at: https://doi.org/10.1016/j.apsusc.2011.03.057.

149. Batool, M., B. Albargi, H., Ahmad, A., Sarwar, Z., Khaliq, Z., Qadir, M. B., Arshad, S. N., Tahir, R., Ali, S., & Jalalah, M. (2023). Nano-Silica Bubbled Structure Based Durable and Flexible Superhydrophobic Electrospun Nanofibrous Membrane for Extensive Functional Applications. Nanomaterials, 13(7), 1146. https://doi.org/10.3390/nano13071146

150. Barthwal, S., Barthwal, S., Singh, B., & Singh, N. B. (2020). Multifunctional and fluorine-free superhydrophobic composite coating based on PDMS modified MWCNTs/ZnO with self-cleaning, oil-water separation, and flame retardant properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 597, 124776. https://doi.org/10.1016/j.colsurfa.2020.124776

151. Zhang, X., Guo, Y., Zhang, Z. & Zhang, P. (2013). Self-cleaning superhydrophobic surface based on titanium dioxide nanowires combined with polydimethylsiloxane. Applied Surface Science, 284, pp. 319-323. DOI: 10.1016/j.apsusc.2013.07.100.

152. Sun, R., Zhao, J., Li, Z., Qin, N., Mo, J., Pan, Y., & Luo, D. (2020). Robust superhydrophobic aluminum alloy surfaces with anti-icing ability, thermostability, and mechanical durability. Progress in Organic Coatings, 147, p. 105745. DOI: 10.1016/j.porgcoat.2020.105745.

153. Liu, X., Xu, Y., Ben, K., Chen, Z., Wang, Y., & Guan, Z. (2015). Transparent, durable and thermally stable PDMS-derived superhydrophobic surfaces. Applied Surface Science, 339, 94-101. Available at: https://doi.org/10.1016/j.apsusc.2015.02.157.

154. Mahadik, S. A., Pedraza, F., & Vhatkar, R. S. (2016). Silica based superhydrophobic coating for long-term industrial and domestic applications. Journal of Alloys and Compounds, 663, 487–493. https://doi.org/10.1016/j.jallcom.2015.12.191

155. Sriram, S., & Kumar, A. (2019). Separation of oil-water via porous PMMA/SiO2 nanoparticles superhydrophobic surface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 563, 271–279. https://doi.org/10.1016/j.colsurfa.2018.11.059

156.  Ji, S., Ramadhianti, P. A., Nguyen, T.-B., Kim, W., & Lim, H. (2013). Simple fabrication approach for superhydrophobic and superoleophobic Al surface. Microelectronic Engineering, 111, 404–408. https://doi.org/10.1016/j.mee.2013.03.021

157.  Pan, Q., Cao, Y., Xue, W., Zhu, D., & Liu, W. (2019). Picosecond laser-textured stainless steel superhydrophobic surface with an antibacterial adhesion property. Langmuir, 35(35), 11414–11421. https://doi.org/10.1021/acs.langmuir.9b01568

158.  Ma, J., Zhang, X., Wang, D., Zhao, D., Ding, D., Liu, K., & Wang, W. (2014). Superhydrophobic metallic glass surface with superior mechanical stability and corrosion resistance. Applied Physics Letters, 104(17). https://doi.org/10.1063/1.4873725

159. Wang, Y., Gao, C., Zhao, W., Zheng, G., Ji, Y., Dai, K., Mi, L., Zhang, D., Liu, C., & Shen, C. (2020). Large-area fabrication and applications of patterned surface with anisotropic superhydrophobicity. Applied Surface Science, 529, 147027. https://doi.org/10.1016/j.apsusc.2020.147027

160. Wang, Z., Li, Q., She, Z., Chen, F., & Li, L. (2012). Low-cost and large-scale fabrication method for an environmentally-friendly superhydrophobic coating on magnesium alloy. Journal of Materials Chemistry, 22(9), 4097–4105. https://doi.org/10.1039/c2jm14956h

161. Zhang X., Zhao J., Mo J., Sun R., Li Z., & Guo Z. (2019). Fabrication of superhydrophobic aluminum surface by droplet etching and chemical modification. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 567, 205–212. https://doi.org/10.1016/j.colsurfa.2019.01.055

162. Luo Z., Zhang Z., Hu L., Liu W., Guo Z., Zhang H., & Wang W. (2008). Stable bionic superhydrophobic coating surface fabricated by a conventional curing process. Advanced Materials, 20(5), 970–974. https://doi.org/10.1002/adma.200701402

163. Seo J., Hajra S., Sahu M., Kim H. J., (2021), Effect of cilia microstructure and ion injection upon single-electrode triboelectric nanogenerator for effective energy harvesting. Materials Letters, 304, 130674. https://doi.org/10.1016/j.matlet.2021.130674

164.  Lv Z., Yu S., Song K., Zhou X., Yin X., (2020), A two-step method fabricating a hierarchical leaf-like superamphiphobic PTFE/CuO coating on 6061Al. Progress in Organic Coatings, 147, 105723. https://doi.org/10.1016/j.porgcoat.2020.105723

165. Manoharan, K. & Bhattacharya, S. (2019). Superhydrophobic surfaces review: Functional application, fabrication techniques and limitations. Journal of Micromanufacturing, 2(1), pp. 59–78. DOI: 10.1177/2516598419836345.

166. Zhao Y., Zhang P., Gu X., Zhang X., Huo M., (2023), Preparation of PVDF-PDMS-SiO2 multi-stage rough superhydrophobic coating with excellent anti-corrosion and drag reduction performance via one-step cold spraying. Surface and Coatings Technology, 471, 129882. https://doi.org/10.1016/j.surfcoat.2019.129882

167. Kaczmarek, M., Przybylska, A., Szymańska, A. et al. (2023). Thiol-ene click reaction as an effective tool for the synthesis of PEG-functionalized alkoxysilanes-precursors of anti-fog coatings. Sci Rep, 13, 21025. DOI: 10.1038/s41598-023-48192-4.

168. Yusuf, Y., Ghazali, M. J., Taha, M. M., & Omar, N. I. (2022). A brief overview of the marine environmentally friendly anti-fouling surface strategy. Proc IMechE Part J: J Eng Tribol. DOI: 10.1177/13506501221139681.

169. Zhou, W., Min, F., Shi, J., Wang, D., Huang, H., Liu, H. & Chu, Z. (2023). High temperature oil–water separation based on superwettable membranes for removing water from condensation reactions. J. Mater. Chem. A, 11(25), pp.13231–13237. DOI: 10.1039/D3TA02483K.

170. Hedayati, S., Tarahi, M., Azizi, R., Baeghbali, V., Ansarifar, E. & Hashempur, M. H. (2023). Encapsulation of mint essential oil: Techniques and applications. Adv. Colloid Interface Sci., 321, 103023. DOI: 10.1016/j.cis.2023.103023.

171.  Han, J., Liu, E., Zhou, Y., Zhao, S., Yan, H., Hu, C., Kang, J., Han, Q. & Su, Y. (2023). Robust superhydrophobic film on aluminum alloy prepared with TiO2/SiO2-silane composite film for efficient self-cleaning, anti-corrosion and anti-icing. Mater. Today Commun., 34, 105085. DOI: 10.1016/j.mtcomm.2022.105085.

172. Tian, N., Xu, D., Wei, J., Li, B. & Zhang, J. (2024). Long-lasting anti-bacterial face masks enabled by combining anti-bacterial materials and superhydrophobic coating. Surf. Coat. Technol., 476, 130229. DOI: 10.1016/j.surfcoat.2023.130229.

173. Tang, K., Xue, J., Zhu, Y. & Wu, C. (2023). Design and synthesis of bioinspired nanomaterials for biomedical application. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 16(1), e1914. DOI: 10.1002/wnan.1914.

174. Wang, X., Zeng, J., Yu, X., Liang, C. & Zhang, Y. (2019). Water harvesting method via a hybrid superwettable coating with superhydrophobic and superhydrophilic nanoparticles. Appl. Surf. Sci., 465, pp.986-994. DOI: 10.1016/j.apsusc.2018.09.210.

175. Qin, J. & Lu, H. (2023). A review of self-cleaning coatings for solar photovoltaic systems: theory, materials, preparation, and applications. Environmental Science and Pollution Research, 30, pp.91591–91616. DOI: 10.1007/s11356-023-28550-5.

176. Liu, Y., Han, X., Chen, C., Huang, C., Long, L., He, Y., Yang, G., Shen, F., Zhang, X. & Zhang, Y. (2023). A fluorine-free and nanoparticle-free superhydrophobic coating: A mechanism and self-cleaning application investigation. Appl. Surf. Sci., 608, 155103. DOI: 10.1016/j.apsusc.2022.155103.

177. Wang, P., Yan, X., Zeng, J., Luo, C. & Wang, C. (2022). Anti-Reflective superhydrophobic coatings with excellent durable and Self-cleaning properties for solar cells. Applied Surface Science, 602, 154408. https://doi.org/10.1016/j.apsusc.2022.154408

178. Nomeir, B., Lakhouil, S., Boukheir, S., Ali, M. A. & Naamane, S. (2023). Recent progress on transparent and self-cleaning surfaces by superhydrophobic coatings deposition to optimize the cleaning process of solar panels. Solar Energy Materials and Solar Cells, 257, 112347. https://doi.org/10.1016/j.solmat.2023.112347

179. Liu, E., Yin, X., Hu, J., Yu, S., Zhao, Y. & Xiong, W. (2020). Fabrication of a biomimetic hierarchical superhydrophobic Cu-Ni coating with self-cleaning and anti-corrosion properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 586, 124223. https://doi.org/10.1016/j.colsurfa.2019.124223

180. Fakhri, M., Rezaee, B., Pakzad, H. & Moosavi, A. (2023). Facile, scalable, and low-cost superhydrophobic coating for frictional drag reduction with anti-corrosion property. Tribology International, 178, 108091. https://doi.org/10.1016/j.triboint.2022.108091

181. Chen, L., Wang, S., Ding, J., Wang, Y., Bennett, P., Cheng, J., Yang, Q. & Liu, D. (2023). Open water characteristics of marine propeller with superhydrophobic surfaces. Ocean Engineering, 269, 113440. https://doi.org/10.1016/j.oceaneng.2022.113440

182. Ellis-Terrell, C. A., Poenitzsch, V., Wei, R., Coulter, K., Miller, M. A., Musgrove, G., Krouse, C. & Simpson, J. (2017). Designing superhydrophobic coatings for aircraft drag avoidance. 0282. https://doi.org/10.2514/6.2017-0282

183. Bai, Y., Zhang, H., Shao, Y., Zhang, H. & Zhu, J. (2021). Recent Progresses of Superhydrophobic Coatings in Different Application Fields: An Overview. Coatings, 11(2), 116. https://doi.org/10.3390/coatings11020116

184. Nguyen, H., Lee, S., Ryu, J., Kim, M., Yoon, J., & Chang, K., (2024), Numerical Investigation of the Effect of Air Layer on Drag Reduction in Channel Flow over a Superhydrophobic Surface, Sci. Rep., 14(1), pp. 1-20. Available at: https://doi.org/10.1038/s41598-024-63070-3 (Accessed: 8 July 2024).

185. Bhushan, B., & Jung, Y. C. (2010). Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Progress in Materials Science, 56(1), 1-108. https://doi.org/10.1016/j.pmatsci.2010.04.003

186. Fukagata, K., Kasagi, N., & Koumoutsakos, P. (2006). A theoretical prediction of friction drag reduction in turbulent flow by superhydrophobic surfaces. Physics of Fluids, 18(5), 051703. Available at: https://doi.org/10.1063/1.2209181.

187. Tuo, Y., Chen, W., Zhang, H., Li, P., & Liu, X. (2018). One-step hydrothermal method to fabricate drag reduction superhydrophobic surface on aluminum foil. Applied Surface Science, 446, 230-235. https://doi.org/10.1016/j.apsusc.2018.01.046

188. Dong, H., Cheng, M., Zhang, Y., Wei, H., & Shi, F. (2013). Extraordinary drag-reducing effect of a superhydrophobic coating on a macroscopic model ship at high speed. Journal of Materials Chemistry A, 1(19), 5886–5891. https://doi.org/10.1039/C3TA10225D

189. Van Maele, K., Merci, B., & Dick, E. (2003). Comparative study of k-epsilon turbulence models in inert and reacting swirling flows. 3744. https://doi.org/10.2514/6.2003-3744

190. Du, P., Wen, J., Zhang, Z., Song, D., Ouahsine, A., & Hu, H. (2017). Maintenance of air layer and drag reduction on superhydrophobic surface. Ocean Engineering, 130, 328-335. https://doi.org/10.1016/j.oceaneng.2016.11.028

191.  Yin, L., et al., (2017). Fabrication and drag reduction of the superoleophobic surface on a rotational gyroscope. Surface Engineering, 34(2), pp. 165–171. Available at: https://doi.org/10.1080/02670844.2016.1275486.

192. Li, L., Zhu, J., Zhi, S., Liu, E., Wang, G., Zeng, Z., Zhao, W., & Xue, Q. (2018). Study of adhesion and friction drag on a rough hydrophobic surface: Sandblasted aluminum. Physics of Fluids, 30(7), 071903. https://doi.org/10.1063/1.5039712

193. Soltani Ayan, M., Entezari, M., & Chini, S. (2019). Experiments on skin friction reduction induced by superhydrophobicity and Leidenfrost phenomena in a Taylor-Couette cell. International Journal of Heat and Mass Transfer, 132, 271-279. https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.165

194. Zhu, X., Zhang, Z., Ge, B., Men, X., Zhou, X., & Xue, Q. (2014). A versatile approach to produce superhydrophobic materials used for oil–water separation. Journal of Colloid and Interface Science, 432, 105-108. https://doi.org/10.1016/j.jcis.2014.06.056

195. Gupta, R. K., Dunderdale, G. J., England, M. W., & Hozumi, A. (2017). Oil/water separation techniques: A review of recent progresses and future directions. Journal of Materials Chemistry, 5, 16025-16058. https://doi.org/10.1039/C7TA02070H

196. Latthe, S. S., Sutar, R. S., Bhosale, A., Sadasivuni, K. K., & Liu, S. (2018). Superhydrophobic surfaces for oil-water separation. In S. S. Latthe, R. S. Sutar, A. Bhosale, K. K. Sadasivuni, & S. Liu (Eds.), Superhydrophobic Polymer Coatings (pp. 339-356). https://doi.org/10.1016/B978-0-12-816671-0.00016-3

197. Wang, B., Liang, W., Guo, Z., & Liu, W. (2015). Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: A new strategy beyond nature. Chemical Society Reviews, 44(1), 336–361. https://doi.org/10.1039/C4CS00220B

198. Zhang, Z., Wang, H., Liang, Y., Li, X., Ren, L., Cui, Z., & Luo, C. (2018). One-step fabrication of robust superhydrophobic and superoleophilic surfaces with self-cleaning and oil/water separation function. Scientific Reports, 8(1), 1-12. https://doi.org/10.1038/s41598-018-22241-9

199. Barati Darband, Gh., Aliofkhazraei, M., Khorsand, S., Sokhanvar, S., & Kaboli, A. (2019). Science and engineering of superhydrophobic surfaces: Review of corrosion resistance, chemical and mechanical stability. Arabian Journal of Chemistry, 13(1), 1763-1802. https://doi.org/10.1016/j.arabjc.2018.01.013

200.  Saeed, A., Rehan, ZA., Zhan, D., Zahid, M., Hu, Q., Haider, A. A., Tahir, S., Xu, W., & Liu, J. (2023). A facile approach for making superhydrophobic cotton fabric membrane for oil water separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 678, 132478. https://doi.org/10.1016/j.colsurfa.2023.132478

201. Singh, M. K., Tewari, R., Zafar, S., Rangappa, S. M., & Siengchin, S. (2023). A comprehensive review of various factors for application feasibility of natural fiber-reinforced polymer composites. Results in Materials, 17, 100355. https://doi.org/10.1016/j.rinma.2022.100355

202. Jin, M., Xing, Q., & Chen, Z. (2020). A review: Natural superhydrophobic surfaces and applications. Journal of Biomaterials and Nanobiotechnology, 11(02), 110. Available at: http://dx.doi.org/10.4236/jbnb.2020.112008

203. Parvate, S., Dixit, P., & Chattopadhyay, S. (2020). Superhydrophobic surfaces: Insights from theory and experiment. Journal of Physical Chemistry B, 124(8), 1323-1360. https://doi.org/10.1021/acs.jpcb.9b08567

204. Ye, Y., Kang, Z., Wang, F., Long, Y., Guo, T., Chen, D., Kong, J., & Xu, L. (2023). Achieving hierarchical structure with superhydrophobicity and enhanced anti-corrosion via electrochemical etching and chemical vapor deposition. Applied Surface Science, 610, 155362. https://doi.org/10.1016/j.apsusc.2022.155362

205. Lin, Y., Chen, H., Wang, G., & Liu, A. (2018). Recent progress in preparation and anti-icing applications of superhydrophobic coatings. Coatings, 8(6), 208. https://doi.org/10.3390/coatings8060208

206. Bharathidasan, T., Kumar, S. V., Bobji, M. S., Chakradhar, R. P. S., & Basu, B. J. (2014). Effect of wettability and surface roughness on ice-adhesion strength of hydrophilic, hydrophobic and superhydrophobic surfaces. Applied Surface Science, 314, 241-250. https://doi.org/10.1016/j.apsusc.2014.06.101

207.  Xue, Y., Wang, Y., Wang, Y., Liang, W., Wang, F., Zhu, D., & Zhao, H. (2023). Functionalized superhydrophobic MWCNT/PEI nanocomposite film with anti-icing and photo-/electrothermal deicing properties. Materials Chemistry and Physics, 297, 127385. Available at: https://doi.org/10.1016/j.matchemphys.2023.127385.

208. Qi, Y., Yang, Z., Chen, T., Xi, Y., & Zhang, J. (2020). Fabrication of superhydrophobic surface with desirable anti-icing performance based on micro/nano-structures and organosilane groups. Applied Surface Science, 501, 144165. Available at: https://doi.org/10.1016/j.apsusc.2019.144165.

209. Hou, W., Shen, Y., Tao, J., Xu, Y., Jiang, J., Chen, H., & Jia, Z. (2020). Anti-icing performance of the superhydrophobic surface with micro-cubic array structures fabricated by plasma etching. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 586, 124180. Available at: https://doi.org/10.1016/j.colsurfa.2019.124180.

210.  Wang, P., Yao, T., Li, Z., Wei, W., Xie, Q., Duan, W., & Han, H. (2020). A superhydrophobic/electrothermal synergistically anti-icing strategy based on graphene composite. Composites Science and Technology, 198, 108307. Available at: https://doi.org/10.1016/j.compscitech.2020.108307.

211. Li, X., Wang, G., Moita, A. S., Zhang, C., Wang, S., & Liu, Y. (2020). Fabrication of bio-inspired non-fluorinated superhydrophobic surfaces with anti-icing property and its wettability transformation analysis. Applied Surface Science, 505, 144386. Available at: https://doi.org/10.1016/j.apsusc.2019.144386.

212. Song, J., Li, Y., Xu, W., Liu, H., & Lu, Y. (2019). Inexpensive and non-fluorinated superhydrophobic concrete coating for anti-icing and anti-corrosion. Journal of Colloid and Interface Science, 541, 86-92. Available at: https://doi.org/10.1016/j.jcis.2019.01.014.

213. Barthwal, S., & Lim, S.-H. (2019). Rapid fabrication of a dual-scale micro-nanostructured superhydrophobic aluminum surface with delayed condensation and ice formation properties. Soft Matter, 15(39), 7945–7955. Available at: http://dx.doi.org/10.1039/C9SM01256G.

214. Howarter, J. A., & Youngblood, J. P. (2008). Self-cleaning and next generation anti-fog surfaces and coatings. Macromolecular Rapid Communications, 29(6), 455-466. Available at: https://doi.org/10.1002/marc.200700733.

215. Margrain, T. H., & Owen, C. (1996). The misting characteristics of spectacle lenses. Ophthalmic and Physiological Optics, 16(2), 108-114. Available at: https://doi.org/10.1046/j.1475-1313.1996.95000232.x.

216.  Herbots, N., Watson, C.F., Culbertson, E.J. et al. (2016). Super-hydrophilic, bio-compatible anti-fog coating for lenses in closed body cavity surgery: VitreOx™ — scientific model, in vitro experiments and in vivo animal trials. MRS Advances, 1, 2141–2146. Available at: https://doi.org/10.1557/adv.2016.474.

217.  Moradiya, M.A., Khiriya, P.K., Khare, P.S., & Markna, J. (2021). Nanotechnology in battle against CoViD-19: The prevention, diagnosis, and treatment. January 202110(4), 2637-2645. https://doi.org/10.33263/LIANBS104.26372645.

218. Xiang, J., Liu, X., Liu, Y., Wang, L., He, Y., Luo, L., Yang, G., Zhang, X., Huang, C., & Zhang, Y. (2021). Synthesis of a novel anti-fog and high-transparent coating with high wear resistance inspired by dry rice fields. Chemical Engineering Science, 242, 116749. https://doi.org/10.1016/j.ces.2021.116749.

219. Parvate, S., Dixit, P., & Chattopadhyay, S. (2020). Superhydrophobic surfaces: Insights from theory and experiment. Journal of Physical Chemistry B, 124(8), 1323-1360. https://doi.org/10.1021/acs.jpcb.9b08567.

220. Lai, Y., Tang, Y., Gong, J., Gong, D., Chi, L., Lin, C., & Chen, Z. (2012). Transparent superhydrophobic/superhydrophilic TiO2-based coatings for self-cleaning and anti-fogging. Journal of Materials Chemistry, 22(15), 7420–7426. Available at: http://dx.doi.org/10.1039/C2JM16298A.

221. Falde, E.J., Yohe, S.T., Colson, Y.L., & Grinstaff, M.W. (2016). Superhydrophobic materials for biomedical applications. Biomaterials, 104, 87-103. Available at: https://doi.org/10.1016/j.biomaterials.2016.06.050.

222. Lai, J., Chen, A., Li, J., Pei, Y., Naghavi, S.A., Lei, C., Liu, C., & Huang, L. (2023). Bio-inspired mechanically robust superhydrophobic polypropylene surfaces embedded with silicon carbide whiskers for enhancing bactericidal performance. Journal of Materials Research and Technology, 23, 998-1012. Available at: https://doi.org/10.1016/j.jmrt.2023.01.069.

223. Jin, Q., Chen, D., Song, Y., Liu, T., Li, W., Chen, Y., Qin, X., Zhang, L., Wang, J. and Xie, M., (2023), Ultrasound-Responsive Biomimetic Superhydrophobic Drug-Loaded Mesoporous Silica Nanoparticles for Treating Prostate Tumor, Pharmaceutics, 15(4), p. 1155. https://doi.org/10.3390/pharmaceutics15041155.

224. Jokinen, V., Kankuri, E., Hoshian, S., Franssila, S., & Ras, R.H.A., (2018), Superhydrophobic blood-repellent surfaces, Adv. Mater., 30(24), e1705104. https://doi.org/10.1002/adma.201705104.

225. Jin, M., Xing, Q., & Chen, Z. (2020). A review: Natural superhydrophobic surfaces and applications. Journal of Biomaterials and Nanobiotechnology, 11(02), 110. Available at: https://doi.org/10.4236/jbnb.2020.112008.

226. Yao, W., Cheng, J., Sun, W., et al., (2023), Recent advances in bioinspired superhydrophobic surfaces for biomedical applications, Acta Mater. Compos. Sin., 40(10), 5502-5517. https://doi.org/10.13801/j.cnki.fhclxb.20230607.003.

227. Moradiya, M.A., Ladani, A., Ladani, J., Raiyani, C., & Markna, J.H. (2019). New Way to Treat Cancer: Magnetic Nanoparticle based Hyperthermia. Journal of Chemical Sciences and Engineering, 2(1), 58-60.

228. Markna, J., & Shiyani, T. (2019). Nanodevices: Principle and Applications. GRIN Verlag.

229. Falde, E.J., Yohe, S.T., Colson, Y.L., & Grinstaff, M.W. (2016). Superhydrophobic materials for biomedical applications. Biomaterials, 104, 87-103. https://doi.org/10.1016/j.biomaterials.2016.06.050

230. Chen, Y., Ao, J., Zhang, J., Gao, J., Hao, L., Jiang, R., Zhang, Z., Liu, Z., Zhao, J., & Ren, L. (2023). Bioinspired Superhydrophobic Surfaces, Inhibiting or Promoting Microbial Contamination? Materials Today, 67, 468-494. https://doi.org/10.1016/j.mattod.2023.06.006

231. Honig F, Vermeulen S, Zadpoor AA, de Boer J, Fratila-Apachitei LE. (2020) Natural Architectures for Tissue Engineering and Regenerative Medicine. Journal of Functional Biomaterials, 11(3), 47. https://doi.org/10.3390/jfb11030047

232. Celik, N., Sahin, F., Ruzi, M., Yay, M., Unal, E., Onses, M. S. (2021) Blood Repellent Superhydrophobic Surfaces Constructed from Nanoparticle-free and Biocompatible Materials. Colloids and Surfaces B: Biointerfaces, 205, 111864. https://doi.org/10.1016/j.colsurfb.2021.111864

233. Abbas A, Zhang C, Asad M, Waqas A, Khatoon A, Hussain S, Mir SH. (2022) Recent Developments in Artificial Super-Wettable Surfaces Based on Bioinspired Polymeric Materials for Biomedical Applications. Polymers (Basel), 14(2), 238. https://doi.org/10.3390/polym14020238

234. Song, B., Xu, S., Shi, S., Jia, P., Xu, Q., Hu, G., Zhang, H., Wang, C. (2015) Superhydrophobic Coating to Delay Drug Release from Drug-loaded Electrospun Fibrous Materials. Applied Surface Science, 359, 245-251. https://doi.org/10.1016/j.apsusc.2015.10.085

235. Irwin, N. J., Bryant, M. G., McCoy, C. P., Trotter, J. L., Turner, J. (2020) Multifunctional, low friction, antimicrobial approach for biomaterial surface enhancement. ACS Applied Bio Materials, 12. Advance online publication. https://doi.org/10.1021/acsabm.9b01042

236. Kavitha, A., Deeksha, S., Deepika, P., Nishanthini, J., Hikku, G. S., Antinate, S. S., Jeyasubramanian, K., Murugesan, R. (2020) Super-hydrophobicity: Mechanism, Fabrication and Its Application in Medical Implants to Prevent Biomaterial Associated Infections. Journal of Industrial and Engineering Chemistry, 92, 1-17. https://doi.org/10.1016/j.jiec.2020.08.008

237. Wang, Z., Paul, S., Stein, L.H., Salemi, A., Mitra, S. (2022) Recent Developments in Blood-Compatible Superhydrophobic Surfaces. Polymers, 14, 1075. https://doi.org/10.3390/polym14061075